Microbiology Learning Framework

Торіс	Learning Goal (see below for sample Learning Objectives)
	How did cells, organelles (e.g., mitochondria and chloroplasts), and all major metabolic pathways evolve from early prokaryotic cells?
	How have mutations and horizontal gene transfer, with immense variety of microenvironments, selected for a huge diversity of microorganisms?
Evolution	How do humans' impact on the environment influence the evolution of microorganisms (e.g., emerging diseases and the selection of antibiotic resistance)?
	Why is the traditional concept of species not readily applicable to microbes due to asexual reproduction and the frequent occurrence of horizontal gene transfer?
	How is the evolutionary relatedness of organisms best reflected in phylogenetic trees?
	How have the structure and function of microorganisms been revealed by the use of microscopy?
	How do unique bacterial cell structures make them targets for antibiotics, immunity, and phage infection?
Cell Structure and Function	How do specialized structures (e.g. flagella, endospores and pili) confer critical capabilities to bacteria and archaea?
	Even though microscopic eukaryotes (e.g., fungi, protozoa, and algae) carry out some of the same processes as bacteria, how do many of the cellular properties fundamentally differ?
	How are replication cycles of viruses (lytic and lysogenic) different among viruses and how are they determined by their unique structures and genomes?
	How do bacteria and Archaea exhibit extensive, and often unique, metabolic diversity?
	How are the interactions of microorganisms among themselves and with their environment determined by their metabolic abilities?
Metabolism	How does the survival and growth of any microorganism in a given environment depend on its metabolic characteristics?
	How can the growth of microorganisms be controlled by physical, chemical, mechanical, or biological means?
	How do genetic variations impact microbial functions (e.g., in biofilm formation, pathogenicity, and drug resistance)?
Information Flow and Genetics	Although the central dogma is universal in all cells, how do the processes of replication, transcription, and translation differ in Bacteria, Archaea, and Eukaryotes?

	How is the regulation of gene expression is influenced by external and internal molecular cues and/or signals?
	How is the synthesis of viral genetic material and proteins dependent on host cells?
	How can cell genomes be manipulated to alter cell function?
	How are microorganisms ubiquitous and live in diverse and dynamic ecosystems?
Systems	Why do most bacteria in nature live in biofilm communities?
	How do microorganisms interact with their environment and modify each other?
	How do microorganisms, cellular and viral, interact with both human and non-human hosts in beneficial, neutral, or detrimental ways?
	Why are microbes essential for life as we know it and the processes that support life?
Impact of Microorganisms	How do microorganisms provide essential models that give us fundamental knowledge about life processes?
	How can humans utilize and harness microbes and their products?
	Why have the effects and potential benefits of microbial life not been fully explored?

Торіс	Learning Goals	Sample Learning Objectives
		Define endosymbiotic theory with respect to mitochondria and chloroplasts.
		State at least two characteristics that all living cells share (e.g., membrane, DNA, and metabolism).
	How did cells, organelles (e.g.,	Describe the evidence that supports the theory that
	mitochondria and chloroplasts), and all major metabolic pathways evolve from	mitochondria evolved from bacteria.
	early prokaryotic cells?	Describe the evidence that supports the theory that chloroplasts evolved from cyanobacteria.
		Explain why glycolysis, the pentose phosphate pathway, and the tricarboxylic (Krebs) cycle are so highly conserved in living
		cells (e.g., 12 essential precursors and energy).
		List three mechanisms of horizontal gene transfer in bacteria.
		State two processes by which mutations can occur.
		Describe how mutations and horizontal gene transfer, together
		with selective pressure, can lead to a rise of antibiotic resistance
	How have mutations and horizontal gene transfer, with immense variety of microenvironments, selected for a huge diversity of microorganisms?	(or xenobiotic bioremediation).
Evolution		Give an example of a bacterial pathogen that devolved
		naturally or artificially to become attenuated (e.g., vaccine
		strains, intracellular pathogens, etc.). Support the example with evidence.
		Analyze and interpret sequence data to determine if horizontal gene transfer, mutation, or recombination has occurred.
		Give an example of a trait (e.g., N2 fixation, pathogenicity island, type III secretion, etc.) that is found in diverse bacteria, and provide evidence that explains how that trait came to be.
		Distinguish between the terms endemic, epidemic, and pandemic.
		Define the term nosocomial infection.
	How do humans' impact on the environment influence the evolution of microorganisms (e.g., emerging diseases and the selection of antibiotic resistance)?	Define the term emergent disease.
		Describe two human practices (in medicine and agriculture)
		that have led to the increase of antibiotic resistance (e.g.,
		antibiotics in feed, stopping antibiotic therapy too soon,
		repeated use of the same antibiotic).
		Describe two human practices that have led to the development

of dead zones in bays or oceans.	
Give an example of a disease that has emerged	due to human
activities, and state what those human activities	were (e.g.,
AIDS, Ebola virus, bird flu, Lyme disease, etc.).	-
Explain how public health policies (e.g., quaran	tine and
vaccination) can alter epidemic/pandemic progr	ression.
Explain how not completing a full treatment of a	antibiotics can
lead to an increase in resistance in a bacterial pe	opulation.
Describe the general process of sexual reproduce	ction, and how it
relates to the definition of species in eukaryotic	organisms.
Describe the general process of asexual reprodu	iction/binary
fission.	
Why is the traditional concept of species Describe the concept of a species with regard to	o a core genome
not readily applicable to microbes due to and genomic islands.	
asexual reproduction and the frequent Explain why the traditional definitions of species	0
occurrence of horizontal gene transfer? reproductive isolation do not apply to Bacteria a	
Discuss one benefit and one problem of this def	
species: "Bacterial and archaeal species are ofte	
bacteria exhibiting more than 70% DNA hybrid	ization among
strains."	
List the three Domains of the phylogenetic tree of	of life. State a
unique characteristic of each Domain.	
List two features of a useful molecular/evolution	,
How is the evolutionary relatedness of Explain what features of 16S rRNA make it useful	•
organisms best reflected in phylogenetic the evolutionary relationship between organism	
trees? Determine the two most related and two least re	elated organisms
from a short list of 16S rRNA sequences.	
Draw inferences about evolutionary relatedness	of organisms
based on phylogenetic trees.	
List three different bacterial cell morphologies.	
Identify microbial structures from a given image.	
Cell Structure and FunctionHow have the structure and function of microorganisms been revealed by the useDescribe how the cell structure of Gram-negative an cells leads to a given Gram stain result.	id Gram-positive
of microscopy? Explain how bright-field microscopy works and why	specimens must
be stained.	speemens must
Explain how phase-contrast microscopy works and v	why specimens

		do not need to be stained.
		Decide on the correct type of microscopy and sample preparation for
		a given situation.
		Explain how magnification and resolution are controlled in a
		microscope.
		State the advantages and disadvantages of using bright-field, phase-
		contrast, dark-field, fluorescence, confocal scanning laser,
		transmission electron, and scanning electron microscopy for a given
		situation.
		List two structures that both Gram-negative and Gram-positive cells
		have in common, and provide the function of each.
		List two structures that are unique to Gram-negative and to Gram-
		positive cells, and provide the function of each.
		Distinguish between cell envelope structures (e.g., membranes and
	How do unique bacterial cell structures	cell wall, etc.) in Gram-positive and Gram-negative bacteria.
	•	Predict whether a given antibiotic would affect Gram-positive and/or
	make them targets for antibiotics, immunity, and phage infection?	Gram-negative cells based in their mechanism of action.
	minumery, and phage mections	Design a target for a new drug based on the structure of bacterial
		cells.
		Describe how bacterial structures (e.g., peptidoglycan,
		lipopolysaccharides, flagella, etc.) stimulate an immune response.
		Explain how antigenic shift can result in resistance to antibiotics, viral
		infection, and evasion of the immune response.
		Diagram the structure of a bacterial flagellum.
	How do specialized structures (e.g. flagella, endospores and pili) confer critical	State the function of pili and fimbriae.
		List the features of endospores that allow them to survive extreme
		conditions over long periods of time.
		Compare and contrast the structure of cell membranes and cell walls
		in Bacteria and Archaea.
		Explain how specialized structures (e.g., pili/fimbrae, capsules,
		lipopolysaccharides, spores, or flagella) enable a microbe to survive
	capabilities to bacteria and archaea?	in a given environment.
		Predict how losing the ability to make a specialized structure (e.g.,
		pili/fimbrae, capsules, lipopolysaccharides, spores, or flagella) might
		affect survival.
		Compare and contrast the different cellular transport processes (e.g.,
		facilitated diffusion, ion driven transport/simple transport, ABC
		transporter, group translocation, etc.) with regard to the proteins
		involved and the energy source used.

	Even though microscopic eukaryotes (e.g., fungi, protozoa, and algae) carry out some of the same processes as bacteria, how do many of the cellular properties fundamentally differ?	 Identify (model or diagram) major eukaryotic cell structures and explain their associated functions. State two unique structures present in Eukaryotes, but not in Bacteria and Achaea. Explain why eukaryotic cells need/have organelles, while bacterial and archaeal cells generally do not. Compare and contrast transcription and/or translation in Eukarotes vs. Bacteria or Archaea. Explain why it is difficult to develop antifungal drugs. Describe some of the successful cellular targets that have been identified.
	How are replication cycles of viruses (lytic and lysogenic) different among viruses and how are they determined by their unique structures and genomes?	Label the key parts of the virus. Arrange the steps of a viral infection in correct order. Predict the replication cycle of a virus based on the genes it carries. Compare and contrast the replication cycles of bacteriophages T4 and lambda, including the consequences of infection. Compare and contrast the differences between lysogenic and latent viral infections. Describe how a lysogenic phage can contribute to virulence, and give one example.
Metabolism	How do bacteria and Archaea exhibit extensive, and often unique, metabolic diversity?	 List two differences between substrate-level phosphorylation and oxidative phosphorylation. Describe how aerobic respiration differs from anaerobic respiration. State the difference between oxygenic and anoxygenic photophosphorylation. Given an energy source and a carbon source, determine the metabolic lifestyle of an organism (e.g., chemoheterotroph, chemolithoautotroph, photoheterotroph, or photoautotroph). Given energy demands and available substrates, predict which metabolic pathways a cell could use. Given the major components of an electron transport chain, put them in order and explain how it could generate a proton motive force for the cell. Design a mechanism that would allow a bacterium to protect its nitrogenase from oxygen. Analyze the symbiotic relationship that some N2-fixing bacteria have with plants. Identify what the bacteria contribute and what the plant contributes. Describe the process of methanogenesis in terms of electron transport and energy generation.

	Provide two examples of how microbial metabolism alters the
	surrounding physical environment.
	Define quorum sensing.
	Give an example of and explain how microbial metabolism is
How are the interactions of microorganisr	important to a relevant societal issue (e.g., health and disease,
among themselves and with their	bioremediation, agriculture, etc.).
environment determined by their metabol abilities?	ic Give an example of how quorum sensing is advantageous to bacterial cells in a given environment.
abinties:	Give an example where the waste product of one microorganism
	serves as an important substrate for another organism (e.g.,
	ammonium-oxidizing bacteria and nitrite-oxidizing bacteria,
	hydrogen producers and methanogens, sulfur oxidizers and sulfur
	reducers, etc.).
	Define cardinal temperature, maximum temperature, and minimum
	temperature for an organism.
	Define thermophilic, psychrophilic, psychrotolerant, mesophilic,
	halophilic, acidophilic, alkalophilic, etc., organisms.
	Name the four phases of prokaryotic growth, and describe what the
	cells are doing during each phase.
How does the survival and growth of any	Explain the concept of diauxic growth.
microorganism in a given environment	Describe how very high (or low) temperatures, pH, or salt
depend on its metabolic characteristics?	concentration inhibit growth (e.g., membrane stability, enzyme
depend on his metabolie characteristics.	activity, proton motive force, etc.).
	Describe how oxygen affects the growth of aerobes, obligate
	anaerobes, and facultative anaerobes.
	Explain in general terms what a chemostat is and for what it is used.
	Given the starting concentration of a culture and the number of
	generations that occur, calculate the final concentration of the
	culture.
	Define the following: antibacterial spectrum, bacteriostatic,
	bactericidal, antibiotic synergism, and antibiotic antagonism.
	Compare sterilization with pasteurization in terms of outcomes.
How can the growth of microorganisms b	Compare ionizing radiation with UV radiation in terms of how they
controlled by physical, chemical,	kii čelis.
mechanical, or biological means?	State the function of complement in the immune response.
incentatical, or biological means:	Predict the growth behavior of microbes based on their growth
	conditions, e.g., temperature, available nutrient, aeration level, etc.
	Given a particular situation, present an argument for the best method (e.g., physical, chemical, biological, etc.) for controlling bacterial

		growth.
	Given a particular organism, develop an isolation scheme using selective media.	
		Explain two strategies that are used in human food preparation to minimize microbial growth during storage.
		Describe how the non-specific immune response works to inhibit microbial growth (e.g. fever, engulfment, inflammatory response).
		Compare and contrast the role of cytotoxic and helper T cells in the specific immune response.
		Explain how a vaccine can be used to elicit a long-term protective immune response.
Information Flow and Genetics	How do genetic variations impact microbial functions (e.g., in biofilm formation, pathogenicity, and drug resistance)?	Define the following: point mutation, genetic insertion, genetic deletion, and frameshift mutation.
		Given a mutation (genetic variation or change in DNA sequence), predict whether or not that change would result in a change of function for the resulting protein (phenotypic change).
		Explain Griffith's classic experiment with rough and smooth cells. Describe the relationship between capsule genes and virulence.
		For a given point mutation, genetic insertion, or genetic deletion, describe a situation that would result in a frameshift mutation and one that would not.
		For a given point mutation, genetic insertion, or genetic deletion, describe a situation that would result in a non-functioning protein and one that would not.
		Compare and contrast the potential effects of a given mutation in an open-reading frame to a mutation in a regulatory region.
	Although the central dogma is universal in all cells, how do the processes of replication, transcription, and translation differ in Bacteria, Archaea, and Eukaryotes?	State two characteristics of the universal genetic code.
		State the average size of genes and genomes in a bacterium vs. a human.
		Explain how chromosome structure differs in Bacteria, Archaea, and Eukaryotes (e.g., histones and circular/linear chromosomes).
		Compare and contrast DNA replication in Bacteria, Archaea and Eukaryotes.
		Explain how the organization of genes in an operon affects transcription in Bacteria, compared to a single gene.
		Explain the role of mRNA processing in Eukaryotes.
		List the similarities and differences in transcription initiation and termination between Bacteria, Archaea, and Eukaryotes.
		List the similarities and differences in translation initiation between

Bacteria, Archaea, and Eukaryotes. Present an argument, using the processes of translation, to explain the evolution of the the Bacteria, Archaea, and Eukaryotes. State the role of a transcriptional repressor (Define the role of each of the following: propolymerase, activator binding site, repressor)	hree branches of cells: or activator). omoter region, RNA
translation, to explain the evolution of the the Bacteria, Archaea, and Eukaryotes. State the role of a transcriptional repressor (Define the role of each of the following: pro-	hree branches of cells: or activator). omoter region, RNA
Bacteria, Archaea, and Eukaryotes.State the role of a transcriptional repressor (Define the role of each of the following: pro-	or activator). omoter region, RNA
State the role of a transcriptional repressor (Define the role of each of the following: pro	omoter region, RNA
Define the role of each of the following: pro	omoter region, RNA
polymeruse, derivator smaring site, represso	r binding site/operator
sigma factor.	
Describe how bacteria can regulate gene ex	pression at the level of
transcription and translation	
How is the regulation of gene expression is	ation.
Influenced by external and internal	
molecular cues and/or signals?	signal call control gene
Give examples of how an external chemica	l signal can control gene
expression.	i signal can control gene
Give examples of mechanisms commonly for	ound to regulate the
activity of transcription factors, including ty	
modification and the binding of small mole	
Define the terms restriction and modificatio	
bacteriophage infection.	0
Given a type of virus, list the steps that take	place in the replication of
its genome.	
Compare and contrast the multiplication of	animal viruses and
How is the synthesis of viral genetic hastorionhages	
material and proteins dependent on nost	eded by RNA, DNA, and
cells? cells? cells?	
Compare and contrast the host enzymes need	eded by RNA, DNA, and
retroviruses.	, , , , , , , , , ,
Given a description of an antiviral medicati	on, predict whether it
would be effective against RNA, DNA, or re	•
List the common features of vectors used for	
List one example in medicine or in agricultu	ure when bacteria
acquired new genes that resulted in an alter	
Describe the mechanisms by which ortholo	gs and paralogs arise.
How can cell genomes be manipulated to Discuss how horizontal gene exchange con	
alter cell function?	
Explain how a transposon can be used to cr	eate a mutant strain.
Design a vector for a given situation.	
Discuss two societal benefits achieved through	ugh the genetic

		manipulation of microbes.
		List two keystone bacterial guilds in these environments: oligotrophic
		ocean, marshland soil, and agricultural field (or others)
		Describe an extreme environment where microbes can survive under
		conditions that humans cannot.
		Explain what adaptations have occurred in
		psychrophiles/thermophiles/halophiles, etc., that permit them to exist
	How are microorganisms ubiquitous and	in their optimal environmental growth conditions.
	live in diverse and dynamic ecosystems?	List the main characteristics of microbes that might be present in a
		given ecosystem, e.g., the animal gastrointestinal tract, the anaerobic
		mud layer at the pond bottom, etc.
		Speculate on what characteristics would be useful for a microbe to survive a move through interplanetary space.
		Discuss how metagenomics can be a tool to study microbes in situ
		and/or in extreme environments.
		Give an example of a beneficial and a detrimental biofilm.
		List the stages of biofilm formation and maturation.
		Compare and contrast cell structure and function in a biofilm with
		pelagic cells.
Systems		Explain how and why biofilm development may differ in different
_ /	Why do most bacteria in nature live in	environments.
	biofilm communities?	Predict conditions that would favor biofilm formation and where they might be found.
		Identify the stages of biofilm development that are more susceptible
		to destruction.
		Describe differential gene expression in a biofilm.
		Develop a drug to prevent biofilm formation.
		Explain the role of biofilms in chronic diseases/infections.
		List two factors that limit growth in a batch culture.
		Define the term eutrophication.
		Choose a perturbation to a novel environment, and predict the
		change to the resident microbial community.
	How do microorganisms interact with their	Explain how the presence of a microorganism elicits a cellular or
	environment and modify each other?	humoral immune response.
		Discuss an example of host-parasite (e.g., human and microbes,
		bacteria and phage, etc.) coevolution.
		Describe how fermentative bacteria in sourdough (or other foods) change their environment, and how that affects the initial community.
		Explain why the presence of nitrogen-fixing bacteria is often required
		Explain with the presence of introgen-fixing bacteria is often required

		to support other growth in a diverse ecosystem.
	How do microorganisms, cellular and viral, interact with both human and non-human hosts in beneficial, neutral, or detrimental	State two ways that the normal microbiota (or probiotics) are beneficial to a human host.
		Name two sites on the human body colonized by the normal microbiota, and give an example of the type of organisms found at those sites.
		Describe at least two innate physical defenses in the human body that are used to fend off an infection.
		Given a particular pathogen (symbiont), describe how it creates cell damage (benefits) in its host.
		Compare and contrast commensal, symbiotic, and pathogenic relationships.
		Explain what adaptations are necessary for a bacterium to survive in the respiratory tract, skin, intestinal tract, or urinary tract.
		Describe how the human biome influences the host human organism.
		Describe a situation that could lead to the normal microbiota causing disease.
		Given a human defense, describe a mechanism that would allow a bacterial pathogen to evade it.
		Provide examples of essential microbe-microbe or microbe-host relationships.
		Describe the role of cyanobacteria in the oxygenation of the atmosphere.
	Why are microbes essential for life as we know it and the processes that support life?	Describe the normal microbiota and the purposes they serve in the environment and human populations.
		Predict the effect on a host organism if the normal microbiota were removed.
		Explain the role of natural microbial populations in bioremediation/decomposition/nutrient cycling.
Impact of Microorganisms	How do microorganisms provide essential models that give us fundamental	Describe a key study using microbes as model organisms that gave rise to insights about biology that are applicable across kingdoms and domains (e.g., Griffith's transformation experiment; Avery, MacLeod, and McCarty's transformation principle experiment; Hershey-Chase phage experiment; Meselson and Stahl's semi-conservative replication; Jacob and Monod's lac operon, etc.).
	knowledge about life processes?	Describe the features of Escherichia coli that have made it a model organism for studying many different life processes. Explain how the rapid growth of microorganisms facilitates evolutionary studies.

		Use genomic tools to trace a given human gene back to a bacterial
		ancestor.
		Describe synthetic biology efforts in bacteria to define the minimal
		genome necessary for life.
		List four ways you have used a microbial product this week.
		List four microbial products that are used in agriculture (medicine or
		industry).
		Explain the importance of microbial fermentation products to
		food/beverage production (e.g., bread, cheese, yogurt, wine, beer,
		etc.).
	How can humans utilize and harness	Provide examples of how microbes can be used to solve energy
	microbes and their products?	problems.
	merobes and then products:	Describe how humans utilize and harness microbes and their
		products for medicinal purposes.
		Conduct research to find the top four microbial processes that gross
		the most revenue on an annual basis.
		Discuss the benefits of two specific tools of modern biotechnology
		that are derived from naturally occurring microbes (e.g. cloning
		vectors, restriction enzymes, <i>Taq</i> polymerase, etc.).
		Explain the great plate anomaly/viable but nonculturable state.
		Give an example of a process/product that was recently attributed to
		being carried out by microbes.
		Discuss the beneficial impact of microbes to at least two different
	Why have the effects and potential benefits	environments.
	of microbial life not been fully explored?	Predict how the removal of microbes can negatively affect a given
		system.
		Explain how an uncultured organism's evolutionary relationship to
		other organisms on a 16S rRNA phylogenetic tree may be established.
		Describe how you would go about prospecting for antibiotics in a
		new environment.